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The dynamical behaviour of a system of parallel line vortices in an inviscid fluid 
is studied numerically. The initial configuration of the system is assumed to be 
such that the points of intersection of the line vortices with a plane normal to the 
vorticity form a regular polygon. The numerical experiments show that the vor- 
tex polygon is rearranged due to non-linear interactions among the line vortices 
in such a way as to produce a more or less uniform distribution of vortices inside 
the fluid with an approximately constant mean separation. The average angular 
velocity of the rotation of the vortex lines about the instantaneous centroid of 
the vortex system remains approximately constant. These results agree with 
the conjecture of Raja Gopal (1964). The results may prove to be of some 
value in a macroscopic model of liquid helium based on hydrodynamical prin- 
ciples. 

1. Introduction 
Liquid helium 11 a t  0 OK has a peculiar behaviour (Andronikashvili & Mama- 

ladze 1966; Pellam 1955, chapter 3).  It has no viscosity but, a t  the same time, 
appears to take part in the rotation of the vessel in which it is placed. To explain 
these contradictory properties, Onsagar (1949) and Feynman (1955, chapter 2) 
have put forward the hypothesis that inside liquid helium, near absolute zero 
temperature, there appear quantized vortex lines when the containing vessel is 
set in rotation. The resultant motion of the fluid due to quantized vortex lines is 
such that the velocity field of the fluid about the axis of rotation corresponds to a 
‘solid-body rotation’ of the vortices in the fluid (Reppy, Depatie & Lane 1960). 
Experimental observations on wave propagation in liquid helium have revealed 
unambiguously quantized velocity fields with the vorticity expected on the 
basis of the Onsagar-Feynman theory. 

There are, however, some theoretical questions one should answer: (i) what 
is the actual mechanism by which these vortices are brought into existence; 
(ii) how do they interact amongst themselves and with the (boundary of the) 
container ‘1 In  this note, we leave open the first question whose solution lies in a 
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quantum mechanical description of the interaction between the liquid and the 
rotating boundary, but attempt to answer the second question using the Helm- 
holtz theorem. 

Several authors (Pincus & Shapiro 1965; Raja Gopal 1964; Fetter, Hohenberg 
& Pincus 1966; Tkachenko 1965,1966) have studied, theoretically, the dynamics 
of parallel line vortex lattices in liquid helium 11. However, there seems to be no 
agreement in their conclusions. Thus, for example, Fetter et aZ. conclude that 
any infinite lattice structure of the line vortices in liquid helium II is unstable; 
while Tkachenko concludes that an infinite array of line vortices forming a 
hexagonal lattice is stable and a square lattice is unstable. Raja Gopal proves 
that any random array of line vortices with a constant mean spacing is stable. 
There is yet no direct experimental evidence about the lattice structure of 
vortex lines in liquid helium 11 (Hall 1961, p. 580). The existing theoretical inter- 
pretations of the experimental data about collective effects of vortex lines deal 
with magnitudes averaged over a volume containing many vortex lines 
(Raja Gopal 1964), in which the essential quantity is the number of vortex lines 
per unit area normal to the direction of vorticity (Turkington, Brown & Osborne 
1963). The common assumption made by the aforementioned authors in their 
theory is that the lattice of line vortices is infinite. This is not a realistic assump- 
tion because the velocity field due to such a system is indeterminate. This in- 
determinacy is removed if one considers a finite array of parallel line vortices. 

Consider an assembly of N line vortices of unit strength parallel to Z axis, and 
let the point of intersection of the nth line vortexwith a plane perpendicular t o  the 
2 axis be represented by a complex number, Cm, then according to the Helmholtz 
theorem, the complex conjugate of the velocity, V(&J, of the mth line vortex 
is given by 

where the bar represents the complex conjugate, and the prime on summation 
indicates that EvL + Cm. It can then be shown (Milne-Thonison 1964) that the un- 
bounded system of line vortices has a centroid which is stationary. There is no loss 
in generality in assuming that the origin of the complex plane coincides with the 
centroid. Now, the necessary and sufficient condition for the system of line vor- 
tices to rotate like a solid body with an angular velocity, !2 (Q is real), is given by 

Using (1) and (2), we see that the condition for solid body rotation of the un- 
bounded system of N line vortices is 

for all m. But (3) is not, in general, satisfied by an arbitrary system of parallel line 
vortices. If the tm form a regular polygon, then (3) is satisfied and LR = & ( N -  1). 
It can be shown that the polygon of line vortices in the fluid rotates like a solid 
body even when the fluid is enclosed in a concentric cylinder whose axes coincide 
with the centroid of the vortices. Havelock (1931) showed that when N > 7, the 
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vortex system, whether bounded or unbounded by a coaxial cylinder, is unstable. 
He also studied the stability properties of the vortex system enclosed in a co- 
axial cylinder when N 6 7.  

Stauffer & Fetter (1968) computed the free energy of various equilibrium 
states of finite systems taking into account the effect of image vortices in a 
rotating cylinder filled with liquid helium 11 in order to determine the precise 
arrangement of vortices. They have shown that the vortices tend to form 
concentric circles about the centre of the cylinder. These authors also discuss the 
relation between minimum free energy and stability. However, their analysis 
does not reveal the evolution of the vortex system from a given initial state. 

I n  this paper, we study the non-linear behaviour of the unstable vortex 
system when enclosed in a coaxial cylinder. The mathematical formulation is 
given in 3 2 .  A discussion of the results of our numerical calculations is made in 
3 3, and the conclusions are summarized in 3 4. All the calculations were performed 
on the digital computer, CDC3600, of the National Computing Centre, Tata 
Institute of Fundamental Research, Bombay. 

2. Non-linear theory 
Let the co-ordinates of a system of N line vortices of strength K t  in a fluid 

enclosed in a cylinder of radius, R, be given by 5, = aZ,, where a < R and, 

(4) 
initially, 

The complex conjugate velocity of the mth vortex is given by the following 
coupled system of non-linear differential equations (Milne-Thomson 1964) 

2, = exp (27rin/N) (n = 0,1 ,2 ,  ..., ( N -  1)). 

where the prime on the first summation indicates that the terms m = n are not 
included; 2, is the non-dimensional complex co-ordinate of the mth line vortex, 
and X and r are, respectively, defined as follows: 

X = R2/a2, (6) 

and r = tK/a2. (7) 

The first summation on the right-hand side of ( 5 )  includes the interaction of 
vortices among themselves, and the second summation represents the effect 
of image vortices. When the system of equations ( 5 )  satisfies the Cauchy-Lip- 
schitz condition, it has a unique solution for given initial values of 2, (Struble 
1962). If we linearize the equations ( 5 )  and study their stability properties, we 
find that the stability criteria are exactly the same as those obtained by Havelock 

t We assume that the sign o f  vorticity is the same for all vortices, for the sake of sim- 
plicity of  computation. The problem, when the vortices do not have the same sign, is 
interesting mathematically, but it is probably of no physical interest because the vorticity 
generated by the interaction of the fluid with the boundary is unlikely to lead to such a 
state. 
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(1931) for the bounded as well as unbounded systems. The non-linear system has 
been solved numerically by using the fourth-order Runge-Kutta method with 
Gill’s modification for values of N equal to 2, 3, 4, 5, 10, 12, 18, 20, 30, 40 
and 50 with pre-assigned initial values of 8, which satisfy the Cauchy-Lip- 
schitz condition. The values of X are so chosen that the system is unstable 
according to  the linear theory of Havelock (1931). The solution is obtained with 
suitable time steps, Ar, such that the solution is unchanged when Ar is reduced. 
After the solution to the system of equations ( 5 )  is found, the mean separation, 
M ,  of the vortices, using the formula 

1V 

2 X’ I-%L--%l M =  nf,n=l 

N ( N  - I )  

is calculated as a function of time. Some typical results, when N = 2 ,  5 ,  40 and 
50, are shown in figures 1-4. In  figure 5 ,  we have given the distribution of the 
density of vortices (number of vortices per unit area versus radial distance) for 
the case N = 50 at  time r = 20. In  figures 6 and 7, we have shown the average, 
the minimum and the maximum of the modulus of the angular velocity of the 
vortex system around the instantaneous centre of rotation. 

3. Discussion of numerical results 
In  all the calculations except the two cases mentioned below, the initial per- 

turbation is such that all the vortices are displaced in the direction perpendicular 
to their axes, so that the real part of their co-ordinate is increased by 0-1. We refer 
to it hereafter as type A perturbation. (There is no specific reason, of course, to 
choose a perturbation value equal to 0.1. Any other value which fulfils the 
Cauchy-Lipschitz condition will do.) I n  a few cases, the initial perturbation is 
such that only one vortex is displaced, and the rcal part of its co-ordinate is 
increased by 0.05. We call this type B perturbation. It has been found that when 
N 2 30 the asymptotic behaviour of the solution is similar for these two types 
of perturbations. Figures 1-7 correspond to type A perturbation. In figure 1, 
which corresponds to N = 2, X = 2, we see that the mean separation of the 
vortex pair oscillates between the maximum and minimum values. Calculations 
were also done for N = 3 and 4, and the average separation (not shown in figures) 
was found to vary in some random manner with time. Figure 2 corresponds to 
iv = 5, X = 2. When N = 10, the solution (not shown in figures) up to r = 20 
(which is the upper limit to which the solution has been followed) shows the 
same qualitative behaviour for X = 4 or X = 03. Presumably, it remains quali- 
tatively the same even for large r.  We have computed the solution when N = 18 
with X = co, and observed that the mean separation of the vortices increases 
with minor fluctuations, but definitely shows an average behaviour which appears 
to be a characteristic feature when N is of the order of 40 as shown in figure 3. 
Figures 3 and 4 correspond, respectively, to N = 40, X = co and N = 50, X = 4. 
In  these figures, one sees that the average separation of vortices increases with 
time without much fluctuation. One finds also that the rate of increase of the 
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mean separation decreases with time, indicating the possibility that for larger 
times, the mean separation tends to a constant value. We see the same behaviour 
of the solution (not shown in figures) when N = 20, and also when N = 30. 
From these numerical experiments, it  seems reasonable to conclude that, when 
N is sufficiently large, say, of the order of 40, the system of parallel line vortices, 
which is unstable according to linear theory, evolves in such a way that the mean 
separation increases but tends to a non-zero finite limit. 
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FIGURE 2.  The mean separation of vortices is plotted against time, when N = 5, 
X = 2 and Ar = 0.002. The initial perturbation is of type A. 

In  figure 5, we have shown the distribution of the density of vortices at  r = 20 
for the case N = 50, with X = 00. This is calculated for the sake of definiteness 
by counting the number of vortices in an annulus of thickness 0.2. We have also 
obtained the distribution of the density of vortices at  different times for both the 
cases when N = 40 and 50. From our calculations we found that the vortex dis- 
tribution, which is initially zero inside the polygon for both N ,  rises to a value 
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comparable to the average value in a time of order of unity (measured in units 
of u2/K) .  The same feature is observed when the fluid is bounded or unbounded. 

The variation of the mean separation, with time for large N ,  is interesting. 
There are no large fluctuations in the mean separation. From these calculations, 
one observes that, when r % 1, a constant density of line vortices without much 
fluctuation will occur due to interactions amongst line vortices. 

In figures 6 and 7, we have shown the average value of the modulus of angular 
velocity of a vortex line around the instantaneous centroid of co-ordinates of the 
vortices, and its maximum and minimum values a t  different times. Figure 6 
corresponds to N = 50, X = 4, and the vortices are bounded in a coaxial cylinder. 
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FIGURE 4. The mean separation of the vortices is plotted against time, when N = 50, 
X = 4 and AT = 0.01. The initial perturbation is of type A. 



Behaviour of a system of parallel line vortices 60 1 

Figure 7 corresponds to  N = 50, X = 00. These two figures show that the motion 
of the vortices is approximately a solid body rotation. 

When the number of vortices was large and the boundary was very close to the 
vortex polygon, we had to choose a very fine time step (usually of order 
or even less) to get an acceptable solution, and the required computer time be- 
came too large. Also, when the polygon is very close to the boundary, the non- 
linear behaviour is very complica,ted. The reason is that when a vortex is near 
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FIGURE 5. Distribution of vortices versus radial distance, ( r ) ,  when 
N = 50, X = co and AT = 0.04 at T = 30. 
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FIGURE 6. Average value of the modulus of angular velocity of vortices versus time 
is shown, when N = 50, X = 4 and AT = 0.01. Compare with figure 7. 
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FIGURE 7. Average value of the modulus of angular velocity of vortices versus time 
is shown, when N = 50, X = co and AT = 0.04. 
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the wall of the container, one term of the second summation in the non-linear 
differential equation (5) tends to become large, and therefore the time step, 
AT, required for the numerical solution becomes too small and thereby reduces 
the practicability of the computation. 

4. ConcIusions 
From the above numerical experiments, i t  seems plausible to conclude that 

a system of parallel line vortices will, due to non-linear interaction, become 
rearranged in such a way as to produce a more or less uniform distribution of 
vortices inside the fluid with an approximately constant mean separation. The 
average angular velocity of the rotation of the vortex lines about the instantane- 
ous centroid of the vortex system remains approximately constant. This numerical 
result conforms with the conjecture of Raja Gopal (1964). Though we initially 
started with a regular arrangement of line vortices one can expect that the 
above conclusions will also hold for an initial irregular configuration of parallel 
line vortices because the initial state of such a system corresponds to an inter- 
mediate state of the evolution of the regular configuration that we studied. 

We are grateful to Professor R. Narasimhan, Head, Computer Group, Tata 
Institute of Fundamental Research, Bombay, for his encouragement. We also 
thank the referees for their helpful comments. 

R E F E R E N C E S  

ANDRONIKASHVILI, E. L. & MAMALADZE, Yu. G. 1966 Rev. Mod. Phys. 38, N4, 567. 
FETTER, A. L., HOHENBERC, P. C. & PINCUS, P. 1966 Phys. Rev. 147, 140. 
FEYNMAN, R. P. 1955 Progress in Low Temperature Physics, Vol. 1 (ed. C. J. Gorter). 
HALL, H. E. $961 Proceedings of the 7th International Conference on Low Temperature 

HAVELOCK, T. H. 1931 The London Edin. and Dublin Phil. Mag. 11, 7th Series, 617. 
MILNE-THOMSON, L. M. 1964 Theoretical Hydrodynamics. London : Macmillan. 
ONSAGER, L. 1949 Nuowo Cimento, 6, Suppl. 2, 249. 
PELLAM, J. R. 1955 Progress in Low Temperature Physics, Vol. 1 (ed. C. J. Gorter). 
PINCUS, P. & SHAPIRO, K. A. 1965 Phys. Rev. Lett. 15, 103. 
RAJA GOPAL, E. S .  1964 Ann. Phys. 29, 350. 
REPPY, J. D., DEPATIE, D. & LANE, C. T. 1960 Phys. Rev. Lett. 5, 541. 
STAUFFER, D. &FETTER, A. L. 1968 Phys. Rev. 168, 156. 
STRUBLE, R. A. 1962 Nonlinear DiJerential Equations. New York : McGraw-Hill. 
TKACHENKO, V. K. 1965 Soviet Phys. J E T P  49, 1875. English Translation, 1966, 22, 

1282. 
TKACHENKO, V. K. 1966 Soviet Phys. J E T P  50,1573. English Translation, 1966,23,1049. 
TURKINCTON, R. R., BROWN, J. B. & OSBORNE, D. V. 1963 Can. J .  Phys. 41, 820. 

Physics (eds. G. M. Graham and A. H. Hallet). University of Toronto Press. 




